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Kinematic aspects of non-linear travelling structure problems are reviewed and
clari"ed in this paper. The description of the motion of a structure can be based on
two di!erent formulations; Eulerian or mixed Eulerian}Lagrangian. The mixed
formulation leads to simpler equations but it requires comprehensive restrictions.
These restrictions and the formulation itself are considered and explained. The
inertia terms of the equations of motion are derived and are shown to be the same
as those in the earlier papers. ( 1999 Academic Press
1. INTRODUCTION

Axially moving material problems consider the dynamic response, vibration and
stability of structural members that are in a state of translation. The problem is an
extensive one that encompasses such apparently diverse mechanical systems as the
paper web in a paper mill or printing press, on/o! winding of textile "bres and
paper, "lament winding of composite components, high-speed magnetic tapes,
power transmission chains and belts, band saws, pipes conveying #uid, etc. Recent
developments in research on axially moving materials have been reviewed by
Wickert and Mote [1], Arbate [2] and PamKdoussis and Li [3].

The earliest non-linear theoretical studies were those of Zaiser [4], who analyzed
the travelling string problem using a Eulerian description. He began from an
application of Newton's second law to a control volume and obtained four
simulataneous di!erential equations for the axial momentum, transverse
momentum, mass tension relation and continuity. Similar formulations were later
considered by Ames et al. [5] and Kim and Tabarrok [6].

Mote [7] developed an alternative formulation that included the elastic e!ect
and geometric non-linearity by means of Hamilton's principle.* The transport
*In Hamilton's principle, the positions of a given set of particles is considered at two di!erent times.
In axially moving strings and beams di!erent particles occupy the domain of interest [8].
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velocity was taken as a constant. In a further derivation, he assumed the derivatives
of longitudinal displacement to be small and ignored them. This led to
a second-order equation, the transverse equation of motion. Later Thurman and
Mote [9] and Wickert [10] used a similar formulation without the assumption for
derivatives of longitudinal displacement, resulting in a governing equation for
longitudinal and transverse motion.

The most notable di!erence between these two developments is the de"nition of
displacement. Zaiser [4] and Ames et al. [5] used a pure Eulerian frame, in which
they de"ned the displacement u of a particle of a string with respect to a spatial
point, x, while Mote [7]. Thurman and Mote [9] and Wickert [10] used a mixed
description. These traditional models represent the translating element as a taut
string or beam that is drawn perfectly straight under tension. A similar mixed
formulation has also been used for a travelling elastic cable (a loose string) by
Perkins and Mote [11] and for a buckled beam by Hwang and Perkins [12].

The purpose of this paper is to review kinematics of the non-linear travelling
structure problems. Since, in our opinion, none of the above papers present
a complete de"nition or clear explanation for the mixed formulation used, the main
objective is to de"ne the formulation and explain some questions arising from the
derivation of the equations and assumptions needed on account of this formulation.
The description of displacement can be interpreted by de"ning a mixed
Eulerian}Lagrangian formulation which is similar to the one presented by
Vu-Quoc and Li [13] and Behdinan et al. [14] for a sliding beam problem. The
de"nition of the formulation is straightforward for the taut string and straight
beam problems, but the association of the spatial point and the material particle
makes the situation more complicated in the case of initially curved structures.

2. AN EULERIAN}LAGRANGIAN FORMULATION FOR THE TAUT STRING
AND STRAIGHT BEAM PROBLEMS

In the traditional Eulerian formulation the variable u (x, t) describes the
transverse displacement of the string material element instantaneously located at x,
as shown in Figure 1(a). The description used in references [7, 9, 10] di!ers from the
traditional Eulerian description in possessing a longitudinal component u

x
[see

Figure 1(b)]. Mote [7] explains that u
x
is the longitudinal displacement and that it

is related to coordinates translating at speed c, while the transverse component u
y
is

related to a spatial frame. Wickert [10] suggested later that both components, the
transverse as well as the longitudinal are described in the spatial frame. Moreover,
he added that longitudinal and transverse displacement must be coupled for "nite
amplitude motion. Thurman and Mote [9] made no comment on the description of
longitudinal displacement or its de"nition.

The description used above can be explained using a similar formulation to that
in references [13, 14] for a sliding beam problem. These two references present
a dynamic formulation for sliding beams that are deployed or retrieved through
prismatic joints, distinguishing di!erent con"gurations: the initial un-deformed or
material con"guration, a spatially "xed intermediate con"guration and a sliding
deformed con"guration. The intermediate con"guration is an arti,ce introduced



Figure 1. Schematic models for axially moving string formulations (a) Eulerian description [5],
(b) &&mixed'' description [9].
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for the purposes of the formulation, and it can be seen as Eulerian domain with
respect to the translating un-deformed beam and a Lagrangian domain with
respect to the current deformed beam.

For the problems of taut axially moving strings and straight beams, the
intermediate con"guration can be chosen as straight under steady state conditions.
The choice is quite obvious, since the #ow of the material particles is stationary and
the geometry is known, the association between a spatial point and a material
particle is speci"ed. The intermediate state can be seen as an Eulerian domain with
respect to the translating structure, since the material point P coincides with the
"xed point pN at time t, and as a Lagrangian domain with respect to the current
deformed structure, since the deformation is described from the "xed point pN to the
spatial point p, see Figure 1(b).

When a stretched steady state is used as an intermediate con"guration, some
restrictions must be made to ensure proper one-to-one mapping of the material
particle to the intermediate con"guration and the deformed "nal con"guration.
First of all, the transport motion of the material particles should be such that the
structure has a prescribed steady state. This is so if the axial speed c is a constant
in time and the #ow is stationary in this steady position, that is, at a given point
with intermediate con"guration, velocity does not change with time. Moreover, the
longitudinal component u

x
of the displacement can arise only through the

transverse motion, as mentioned in reference [9].
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The bene"ts of a mixed Eulerian}Lagrangian description relative to the pure
Eulerian description are quite obvious. The large de#ection from the intermediate
con"guration to a spatial point is identical to the displacement of a material
particle in the string or beam in the absence of axial motion. Thus, the strain energy
needed in Hamilton's principle is identical in form to the strain energy of
a non-moving non-linear structure. Accordingly, the parts of the equations of
motion which do not include time derivatives are also the same. The equation of
motion can be derived using an equation for the motion of a non-moving structure
and replacing the time derivatives with the material time derivative in the mixed
formulation. The equations of motion for a large amplitude vibrating non-moving
string [18] is
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where various symbols have their conventional meanings, (E is Young's modulus,
A the area of cross-section, ¹

0
the initial tension and o the density of the string).

The problem is thus to derive detailed expressions for the right-hand-side terms. It
should noted, however, that the equations (1) represent the motion in terms of
Lagrangian variables. There is a "xed set of particles associated with the equation,
and therefore the state of the material is known and the parameters E, A and o can
be described with respect to the co-ordinate x. On the other hand, equations (9) to
derived later represents motion in terms of Eulerian variables, which are only
de"ned within a speci"ed spatial domain for a set of material particles which enter
and leave the domain. The equation is valid at an instant but can still be re-applied
at every instant [16].

The velocity vector v of a material particle and its material time derivative is next
considered, (that is, its acceleration vector a) using the di!erential geometry shown
in Figure 2. The motion of a material particle P is observed during an in"nitesimal
time step dt. It possess the spatial point p at time t and point q at time t#dt. Since
the time step is in"nitesimal, the displacement can be written as v dt where v is the
velocity at point p. If we map the "xed points in the Eulerian domain (steady state)
corresponding to points p and q, they are pN and qN . Under steady state conditions,
a material particle would move the distance dx in the time dt with a constant speed
c, hence

dx"c dt. (2)

Since the displacement of a material particle from the steady con"guration to the
deformed con"guration [that is, from point pN (located at co-ordinate x) to the
spatial point p] is u"u(pN , t)"u(x, t), which means that x and t are used as
independent variables. The displacement of a material particle from point qN is
therefore
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Figure 2. Displacement of a material particle at the two points in time.
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This is obtained by means of the chain rule and equation (2). Finally, if the
geometry of Figure 2 uses a vector equation

u (x, t )#vdt"dxi#u (x#dx, t#dt) (4)

can be developed. Substituting equations (2) and (3) into equation (4), the expected
result is obtained:
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). (5)

The velocity of a material particle is composed of two parts: the transport motion of
the string c"c (i#u

,x
) and the motion of the con"guration u
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.

The acceleration of a material particle in the string can be developed from the
change in velocity using the chain rule [equations (2) and (5)], that is
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Thus, dividing the change in velocity by dt, the acceleration vector
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is obtained.
The operator of the material time derivative of the mixed Eulerian}
Lagrangian description for an axially travelling taut string and straight beam is
thus

d
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Figure 3. Diagram de"ning the natural, steady and "nal con"gurations of a cable and the
displacement in a point in the con"guration.
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and by substituting equation (7) into equation (1) the equations of motion for an
axially moving string can be obtained:
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These are the same as given in reference [8] for a beam, if the #exural sti!ness terms
are excluded.

3. THE LOOSE STRING PROBLEM (CURVED STEADY STATE)

An even more advanced formulation of this kind is presented by Perkins and
Mote [11], who considered the vibration of a travelling elastic cable (a loose string).
They de"ned displacement as a vector from the steady con"guration- to a "nal
con"guration (see Figure 3), which is said to &&represent the three-dimensional
motion of the "nal con"guration, and it is distinguished from the motion of a cable
particle which includes the particle transport velocity'', meaning that the velocity of
a particle at the point pf, denoted by vf, consists of the movement of the
con"guration u and the transport motion cf,

vf"u
,t
#cf. (10)

In their case, the steady con"guration is not straight but its shape depends on
external loads and the transport speed ci, and it is "xed in space. The string in the
-The word equilibrium is used in reference [10] rather than steady state.
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natural con"guration so is un-stressed, and therefore it can be in transport motion
only if the motion does not cause any stress.

The description of displacement can be explained with a mixed
Eulerian}Lagrangian formulation similar to that given above for taut string and
straight beam problems, although the associations between material particles and
con"guration points are not very clear. If the steady state itself and the #ow of the
material particles in it are known, it is possible to choose this as an intermediate
con"guration. The steady state con"guration can be calculated form the natural
state, as shown in reference [11], by using equations of equilibrium
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where ( )
,s

denotes di!erentiation with respect to the arc length si, o is the density,
A is the cross sectional area, E is Young's modulus, ¹ is the cable tension, K is the
curvature of a con"guration, g is the acceleration due to gravity and l
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are unit

vectors directed along the cable and perpendicular to it. The equations of
equilibrium can be derived by reference to the conservation of linear momentum
(see Appendix A), without using the results of this formulation itself, as is the case in
reference [11]. The #ow of material particles in a steady state is also known by
means of the equations of equilibrium, constitutive equation and conservation of
mass, and according to reference [11] it is

ci"co A
2¹ i

EAo
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where co is the speed of transport in a situation where the transport motion does
not cause any stress and therefore no deformation. Such a state can be reached
when a string is placed on a &&frictionless table'', for instance, and it is exactly
straight and undeformed.

The association between a material particle and a spatial point pi in the steady
con"guration is now clear, but to ensure that an association exists with the point pf

in the "nal con"guration, an assumption has to be made. Actually, this had already
been done earlier when the expressions of conservation of mass were written. The
"rst of equations (13) requires that the in"nite pieces dsf and dsi have the same mass
and therefore the same number of material particles as the piece dso of the natural
con"guration so. In other words, the pieces dsf and dsi are &&clones'' of the base piece
dso, implying that if they are cut o! from the cable and then placed on a &&frictionless
table'' next to the base piece dso, after removal of all stresses (and therefore all
deformations) the pieces will look alike (Figure 4). This can be generalized to the



Figure 4. Deformation of a in"nitesimal piece of a cable con"guration.
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entire cable by stating that the arc length si is a su$cient measure to identify
a particle of the cable if the #ow of particles is homogeneous.

Accepting the above assumption, the curved steady state can be chosen as
the intermediate con"guration and the equations of motion expressed with
respect to its co-ordinates. The mixed formulation can be described in the same
way as in the previous section, the intermediate state being regarded as a
Eulerian domain with respect to the translating structure, since the material
particle coincides with a "xed point pi at time t, and as a Lagrangian domain
with respect to the current deformed structure, since the deformation is described
from the "xed point pi to the spatial point pf (see Figure 3). The advantage of
this mixed Eulerian}Lagrangian formulation over Eulerian description is the
same as in the straight string problem: the description simpli"es the strain energy
of a travelling cable to the form of a non-moving structure.

Another detail to be considered is the derivation of the expression of velocity vf
for a material particle (10) and the transport velocity

cf"cf lf
1
"ci[li

1
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in the "nal con"guration. Perkins and Mote [11] used the equation for the local
tangential base vector in the "nal con"guration

lf
1
"

Lrf (si, t)
Lsf

"[li
1
#u(si, t )

,s
]

dsi
dsf

(16)

and two equations of mass conservation

Aidsi"Afdsf (17)

and

Aici"Afcf (18)

to form equation (15), but they did not take into account the change in density in
this equation. The "rst equation of mass conservation is obvious if density is
considered to be constant, but it is unclear how the second equation was derived.
Actually, it is possible to obtain equation (15) using the kinematics of the cable
alone.



Figure 5. Displacement of a point in the con"guration, and movement of a material particle.

NON-LINEAR TRAVELLING STRUCTURE PROBLEMS 853
The motion of a particle is traced during an in"nitesimal time step dt from the
point pi in the steady state and from the corresponding sample point pf in the "nal
state, as shown in Figure 5. The displacement of a particle in the steady state
consists of transport motion only, and is therefore

dri"cili
1
dt. (19)

The displacement of a particle from the "nal state consists of the transport motion
and the motion of the con"guration, according to equation (10), and is now vfdt.
Since the displacement of the sample point pi, the point in the con"guration where
the particle is located at time t, is u"u(si, t), it is clear that si and t are used as
independent variables. The displacement of a con"guration point pi where the
particle under examination is located at time t#dt is therefore
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The result was obtained by means of the chain rule and a scalar version of equation
(19), or dsi"cidt. Finally, if the geometry of Figure 5 is used, a vector equation

u(si, t )#vfdt"dri#u (si#dsi, t#dt) (21)

can be developed.
Substituting equations (10), (19) and (20) into equation (21), the expected result is
obtained:
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Applying equation (16), the transformation equation can be obtained in the form
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which shows that the transport velocity is indeed in a direction tangential to the
"nal con"guration, which, taken together with the "rst equation of mass
conservation (17), results in the second equation of mass conservation (18). Thus,
equations (15) and (23) are consequences of kinematics only, and the second
equation of mass conservation (18) follows from them and not vice versa.

The acceleration of a particle in the cable can be derived from the change in
velocity using the chain rule, a scalar version of equations (19) and (10); That is
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Thus, if the change in velocity is divided by dt and equation (15) is substituted, we
obtain the acceleration vector
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By reducing this equation and substituting the component form of the displacement
u"u

1
li
1
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2
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2
#u

3
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3

into it, the same inertia terms as in the equations of motion
in reference [10] are obtained.

4. CLOSING REMARKS

A review of the formulations of the axially travelling structure problems is
presented. The main purpose is to clarify the earlier formulations of the mixed
Eulerian}Lagrangian description, which did not de"ne or explain the subject. The
restrictions needed as a consequence of the formulation are also indicated. The #ow
of material particles has to be homogenous in order that the number of particles
and their distribution remain the same. This requirement is due to the mapping of
the material particles from the undeformed state through the intermediate
con"guration to the current deformed structure. Moreover, the inertia terms of the
equations of motion are derived and it is shown that they are the same as in the
earlier papers.
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APPENDIX A

The equation of equilibrium for the steady state of an axially moving loose cable
can be derived using the conservation of linear momentum. Since the system has
a "xed control volume and constant mass, the equation is

R"q
p
, (A1)

where R is the resultant of the external forces and q
p
is the momentum #ux through

the boundaries.
The conservation of momentum for an in"nitesimal piece of travelling cable dsi,

shown in Figure 6, is
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Dividing the equation by dsi and using the de"nition of partial di!erentiation,
gives
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where Ki is the curvature of si, and separate the components in the directions of the



Figure 6. Diagram de"ning the steady con"gurations of a cable.
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local co-ordinate system, the equation assumes the same form as presented by
Perkins and Mote [11].
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